Journal of Organometallic Chemistry, 395 (1990) 341-358 Elsevier Sequoia S.A., Lausanne JOM 20900

Komplexkatalyse

XXXIV *. Darstellung und Charakterisierung kationischer η^3, η^2 -Octa-2(*E*),7-dien-1-yl(ligand)nickel(II)-Komplexe [Ni(C₈H₁₃)L]X (X = PF₆, BF₄; L = P^{III}-Ligand) als Katalysatoren der stereospezifischen Butadienpolymerisation

Rudolf Taube *, Jörg-Peter Gehrke, Peter Böhme und Jürgen Köttnitz

Technische Hochschule "Carl Schorlemmer", Sektion Chemie, Leuna-Merseburg, DDR-4200 Merseburg (D.D.R.)

(Eingegangen den 15. März 1990)

Abstract

Synthesis and characterization of a series of cationic η^3 , η^2 -octa-2(*E*), 7-diene-1yl(ligand) nickel(II)-complexes [Ni(C₈H₁₃)L]X (X = PF₆, L = PCy₃, PPh₃, P(OThym)₃, P(O-o-Tol)₃, P(O-o-^tBuPh)₃; X = BF₄, L = PCy₃, PPh₃, P(OThym)₃) and their catalytic properties for the stereospecific butadiene polymerization are described. The results contribute to the further elucidation of the catalytic structure-activity relationship and support the reaction mechanism derived by us for the catalysis of the 1,4-polymerization of butadiene by cationic allyl nickel(II) complexes.

Zusammenfassung

Es werden die Synthese und Charakterisierung einer Reihe kationischer η^3 , η^2 -Octa-2(*E*),7-dien-1-yl(ligand)nickel(II)-komplexe [Ni(C₈H₁₃)L]X (X = PF₆, L = PCy₃, PPh₃, P(OThym)₃, P(O-o-Tol)₃ P(O-o-^tBuPh)₃; X = BF₄, L = PCy₃, PPh₃, P(OThym)₃) und ihre katalytischen Eigenschaften für die stereospezifische Butadienpolymerisation beschrieben. Die Ergebnisse tragen zur weiteren Klärung der katalytischen Struktur-Wirkungsbeziehung bei und stützen den von uns abgeleiteten Reaktionsmechanismus für die Katalyse der 1,4-Polymerisation des Butadiens durch kationische Allylnickel(II)-Komplexe.

^{*} XXXIII. Mitteilung siehe Lit. [28].

Einleitung

Kationische Allylbis(ligand)nickel(II)-Komplexe $[C_3H_5NiL_2]X$ katalysieren mit einer vom Koordinationsvermögen des Neutralliganden L und des Anions X abhängigen Aktivität und Selektivität die 1,4-Polymerisation des Butadiens [1-4].

Nach dem von uns abgeleiteten mechanistischen Konzept [1,5] werden die katalytische Aktivität und Selektivität durch die Konzentration der Katalysatorkomplexe $[RC_3H_4Ni(C_4H_6)L]^+$, $[RC_3H_4Ni(C_4H_6)X]$ und $[RC_3H_4Ni(C_4H_6)]^+$, und deren unterschiedliche Reaktivität in Abhängigkeit von der η^{2-} oder η^{4-cis-} Koordination des Butadiens am Nickel(II) in der Komplexebene und der *anti*- oder *syn*-Struktur der η^3 -koordinierten Polybutadienylkette bestimmt. Für die Einschubreaktion des Butadiens in die Allylnickel(II)-Bindung nehmen wir in Einklang mit dem Prinzip der kleinsten Strukturänderung und dem Prinzip der maximalen Bindungswechselwirkung zwischen den Reaktanten einen π -Allyleinschubmechanismus an. Danach soll die C-C-Verknüpfung am Nickel zwischen Butadien in der Single-*cis*-Form und der π -koordinierten Allylgruppe erfolgen und als primäres Reaktionsprodukt generell ein *anti*- η^3 , η^2 -Polybutadienylnickel(II)-Komplex entstehen, in dem die neu gebildete *cis*- oder *trans*-Doppelbindung der um eine C₄-Einheit verlängerten Kette koordinativ am Nickel gebunden ist.

In der vorliegenden Arbeit werden die Synthese und Charakterisierung einer Reihe von kationischen η^3 , η^2 -Octa-2(*E*),7-dien-1-yl(ligand)nickel(II)-Komplexen $[\eta^3, \eta^2$ -C₈H₁₃Ni(L)]X und ihre katalytischen Eigenschaften gegenüber Butadien beschrieben und damit die entwickelten mechanistischen Vorstellungen zum Ablauf und zur Struktur-Wirkungsbeziehung bei der allylnickelkomplexkatalysierten stereospezifischen Butadienpolymerisation experimentell weiter gestützt.

Resultate

Synthese und Eigenschaften kationischer η^3 , η^2 -Octa-2(E),7-dien-1-yl(ligand)nickel(II)-Komplexe [Ni(C₈H₁₃)L]X (X = PF₆, BF₄)

Wie Wilke und Mitarbeiter [6] gezeigt haben, reagieren geeignete Nickel(0)-Komplexe, wie z.B. Ni(COD)₂, in Gegenwart eines Phosphor(III)-Liganden in flüssigem Butadien gemäß Gl. 1 zu η^3 , η^1 -Octa-2-(E), 6(Z)- bzw. η^3 , η^3 -Octa-2(E), 6(E)-dien-1, 8-diyl(ligand)-nickel(II)-Komplexen.

 $(L = PCy_3, P^iPr_3, PMe_3, PPh_3, P(O-o-Tol)_3, P(O-o-Biph)_3)$

Für den Triphenylphosphin-Komplex $[\eta^3, \eta^1-C_8H_{12}Ni(PPh_3)]$ wurde außerdem nachgewiesen, daß durch partielle Protolyse mit HCl in Ether bei -30 °C auch ein η^3 -Octa-2(*E*),6-dien-1-yl-chloro-Komplex $[\eta^3-1-C_5H_9C_3H_4Ni(PPh_3)Cl]$ darstellbar ist.

Andererseits erhielten Jolly und Mitarbeiter [7-10] vom Palladium auf analoge Weise kationische η^3 , η^2 -Octa-2(*E*), 7-dien-1-yl(trimethylphosphin)palladium(II)-Komplexe [η^3 , η^2 -C₈H₁₃Pd(PMe₃)]X (X = CH₃O, CH₃CO₂, BF₄, PF₆), in denen die endständige Doppelbindung am Zentralatom koordiniert ist. Wir konnten, wie bereits kurz mitgeteilt [11], gemäß Gl. 2 ausgehend von den in Substanz isolierten oder in Lösung erzeugten Octadiendiyl(ligand)nickel(II)-Komplexen 1 durch partielle Protolyse mit 75% iger wäßriger HPF₆ oder HBF₃ · OEt₂ in Diethylether/THF eine Reihe von kationischen η^3 , η^2 -Octa-2(*E*),7-dien-1yl(ligand)nickel(II)-Komplexen 2 darstellen, die sich, verglichen mit den Bis(ligand)-Komplexen [C₃H₅NiL₂]X, als wesentlich aktivere Katalysatoren für die stereospezifische Butadienpolymerisation erwiesen.

(X: PF_6 , L = PCy_3 2a, PPh_3 2b, $P(OThym)_3$ 2c, $P(O-o-Tol)_3$ 2d, $P(O-o-{}^tBuPh)_3$ 2e; X: BF_4 , L = PCy_3 2f, PPh_3 2g, $P(OThym)_3$ 2h)

Zur Darstellung der Phosphin-Komplexe 2a, 2b bzw. 2f und 2g geht man am besten von den bekannten Octadiendiyl(ligand)nickel(II)-Komplexen [Ni(C_8H_{12})-PCy₃] und [Ni(C_8H_{12})PPh₃] [6] aus und führt die partielle Protolyse mit 75% iger wäßriger HPF₆ oder 54% iger etherischer HBF₄ in Ether bzw. einem Lösungsmittelgemisch von Ether und THF zwischen -78 und -20°C durch. Es ist jedoch auch möglich, und so wurde bei den Phosphit-Komplexen 2c-2e und 2h ausschließlich verfahren, den Octadiendiyl(ligand)nickel(II)-Komplex 1 in situ aus Ni(COD)₂ unter Zusatz von 1 Äquivalent des Liganden durch Reaktion mit Butadien in Ether bei -20°C zu erzeugen und dann gleich anschließend in der Lösung zu protolysieren.

Bei den Hexafluorophosphaten 2a-2c wurde das sich ölig abscheidende Reaktionsprodukt nach Dekantieren der überstehenden Mutterlauge bei -78° C in Methylenchlorid gelöst, die Lösung zur Entfernung des noch vorhandenen Wassers bei -78° C langsam über geglühtes Al₂O₃ filtriert und dann der Komplex mit Ether gefällt. Die Komplexe 2d und 2e bildeten sich dagegen als feinkristalline Niederschläge, die aus der Reaktionslösung unmittelbar durch Filtration isoliert werden konnten. Die Reinigung erfolgte jeweils durch Lösen in Methylenchlorid und Abscheidung mit Ether, die Ausbeuten an reinem Komplex 2 betrugen 20-40%, bezogen auf das eingesetzte Ni(COD)₂, vgl. Tab. 1.

Im Fall der Tetrafluoroborate 2f-2h wurde das in einheitlicher kristalliner Form anfallende Rohprodukt ebenfalls sofort aus Methylenchlorid durch Fällung mit Ether oder Pentan umkristallisiert und der reine Komplex in deutlich höherer Ausbeute erhalten. Zur Reinheitskontrolle diente generell die komplexometrische Nickelbestimmung und das ¹³C-NMR-Spektrum.

Die Octadienyl(ligand)nickel(II)-Komplexe 2a-2h sind gelbe pulverförmige bzw. orangefarbene kristalline Feststoffe, die kurzzeitig an der Luft unverändert

Komp	lex	Anion X	Kristallfarbe	Ausbeute	Analysen (Ni)
Nr.	Ligand L			(d. Th.) (%)	Gef. (ber.) (%)
2a	РСуз	PF ₆	orangefarben	20	9.89 (9.95)
2b	PPh ₃	•	gelb ^a	40	10.21 (10.26)
2c	P(OThym) ₃		ockerfarben	38	7.39 (7.45)
2d	P(O-o-Tol)		gelb	23	8.94 (8.87)
2e	$P(O-o-^{t}BuPh)_{3}$		orangegelb	32	7.49 (7.45)
2f	PCy ₃	BF₄	orangefarben	47	10.21 (10.26)
2g	PPh,	·	orangefarben	72	11.52 (11.37)
2h	P(OThym)		orangegelb	77	8.19 (8.02)

Eigenschaften der $[\eta^3, \eta^2 \cdot C_8 H_{13} Ni(L)]X$ -Komplexe 2a-2h

^a Pulverförmig.

gehandhabt werden können, sich jedoch auch unter Schutzgas langsam thermisch zersetzen, so daß die Aufbewahrung zweckmäßigerweise bei -20 °C erfolgt. Alle Komplexe lösen sich gut in Methylenchlorid, Chloroform und Aceton mit orangegelber Farbe, sind wenig löslich in Chlorbenzen und unlöslich in Diethylether und aliphatischen Kohlenwasserstoffen. Für die besser löslichen Phosphit-Komplexe besteht eine geringe Löslichkeit in Toluen, Benzen und THF, während die Phosphin-Komplexe auch in diesen Lösungsmitteln praktisch nicht löslich sind.

NMR-spektroskopische Strukturuntersuchungen

Die ¹³C-NMR-Spektren der in CDCl₃ bzw. CD₂Cl₂ gelösten Komplexe **2a-2h** zeigen außer den Signalen des Phosphor(III)-Liganden, vgl. Tab. 3, jeweils 8 Signale für die C₈-Kette, die, wie in Tab. 2 angegeben, nach ihrer chemischen Verschiebung und unter Berücksichtigung der gefundenen ¹³C-³¹P-Kopplungskonstanten den drei Allylkohlenstoffatomen C(1,2,3), den drei Methylenkohlenstoffatomen C(4,5,6) und den beiden C-Atomen der koordinierten Doppelbindung C(7,8) zugeordnet werden können.

Die kationische Struktur der Komplexe entsprechend Formel 2, Gl. 2, steht in Einklang mit der Unabhängigkeit der chemischen Verschiebungen von der Art des Anions und folgt aus der Übereinstimmung mit den chemischen Verschiebungen in strukturell vergleichbaren kationischen Allylnickel(II)-Komplexen $[C_3H_5NiL_2]X$ [4] sowie in den strukturidentischen Palladiumkomplexen, wie z.B. $[C_8H_{13}Pd(PMe_3)]BF_4$ [9].

In den kationischen Allylbis(ligand)nickel(II)-Komplexen $[C_3H_5NiL_2]X$ tritt mit abnehmender Donorstärke der Liganden L, die durch den Tolmanschen Ligandparameter $\nu(CO)(A_1)$ [12] charakterisiert werden kann, eine zunehmende Tieffeldverschiebung der Signale für die Allylkohlenstoffatome ein [2,3]. Der gleiche Effekt zeigt sich auch bei den Komplexen **2a-2h**. So verschieben sich die Signale der Allylkohlenstoffatome C(1)-C(3) mit abnehmender Donorstärke des Liganden L in der Reihe PCy₃ > PPh₃ > P(OAr)₃ ebenfalls nach tieferem Feld und entsprechendes deutet sich auch für die olefinischen C-Atome C(7) und C(8) an. Die Ursache für die aus der Reihe fallende anormal hohe Tieffeldverschiebung der endständigen C-Atome C(1) und (8) im Triphenylphosphinkomplex **2b** bzw. **2g** ist noch unklar; möglicherweise ist sie eine Folge einer zusätzlichen Wechselwirkung dieser endständigen C-Atome mit den am Phosphor gebundenen und daher räumlich unmittelbar benachbarten Phenylgruppen des Liganden.

Tabelle 1

Ligand L:	PCy3		PPh ₃		P(OThym) ₃		P(O-o-Tol) ₃	P(O-o-'BuPh) ₃	
Komplex (X):	2a (PF ₆)	2f (BF4)	2b (PF ₆)	2g (BF4)	2c (PF ₆)	2h (BF ₄)	2d (PF ₆)	2e (PF ₆)	
C(1) "	66.7	6:99	74.9	74.4	71.1	71.0	70.7	71.3	
C(2)	108.1	108.1	110.1	109.9	112.2 (4)	112.1	112.3	112.0 (4)	
C(3)	93.7	93.6	96.3 (12)	96.0 (12)	98.7 (20)	99.2 (20)	99.2 (20)	100.0 (20)	
C(4)	x b	×	31.1	31.0 (6)	31.1 (6)	30.9	30.9	30.1 (8)	
C(5)	×	۲	29.5	29.5 (4)	29.9	29.9	29.3	×	
C(6)	×	×	28.4	28.3	28.5	28.4	28.1	28.5	
C(1)	106.2	106.2	106.4	106.2	107.4	107.6	108.0	109.8	
C(8)	67.8	67.8	76.1	76.2	72.0	72.0	72.2	71.8	
LM	cDCI3	CDCI3	CD2Cl2	cDCI3	cDCI,	cDCl ₃	CDCI3	CDC1,	
<i>Т</i> м (°С)	0	0	- 10	0	20	20	20	20	

Chemische Verschiebungen $\delta(C(i))$ (ppm) und in Klammern die Kopplungskonstanten J(C, P) (Hz) in den ¹³C-NMR-Spektren für die C₈-Kette der Komplexe 2a-2h (LM = Lösungsmittel, $T_M =$ Meßtemperatur)

Tabelle 2

^a Numerierung der C-Atome vgl. Formel 2 in Gl. 2. ^b x Signale der C₈-Kette von Ligandsignalen überlagert.

345

1000 1100 100

C(i)	P 1		P 1		P = O = O = O = O = O = O = O = O = O =		P=O-1	P-0-1
	2 3 2	Ŗ	2 3 2 b	2g	$\frac{8}{7}$	Ł	7 ² 3 2d	8 8 8
_	35.6 (21)	35.6 (20)	1	,	148.0 (9)	147.9 (8)	148.8 (7)	149.8 (7)
7	27.3	27.6 (10)	133.2 (10)	133.3 (11)	135.8 (4)	135.7 (4)	128.8 (4)	138.7 (7)
e	29.7	29.9	129.1 (10)	129.1 (11)	127.1	126.8	132.0	127.5
4	25.8	25.9	131.1	131.2	126.9	126.4	125.8	125.4
5					137.2	137.1	127.5	128.5
6					119.4 (7)	119.5 (8)	119.0 (6)	118.5 (9)
7					26.9	26.7	16.1	34.7
~					22.9; 22.6	22.9; 22.4		30.0
0					20.7	20.5		

Chemische Verschiebungen $\delta(C(i))$ (ppm) und in Klammern die Kopplungskonstanten J(C,P) (Hz) aus den ¹³C-NMR-Spektren der Komplexe 2a-2h für die Phosphor(III)-Liganden. Meßbedingungen vgl. Angaben in Tab. 2

Tabelle 3

Die Koordination der olefinischen Doppelbindung am Ende der C₈-Kette über die Atome C(7) und C(8) folgt zweifelsfrei aus der starken Hochfeldverschiebung im Vergleich zu einer freien Doppelbindung, wie z.B. im But-1-en mit Werten von 112.1 bzw. 139.0 ppm [13].

Da die Ausgangskomplexe 1 in der thermodynamisch stabileren syn-Form vorliegen [6], das entspricht der E-Konfiguration für die Doppelbindung am C(2) in der am C(3) durch die Kette substituierten Allylgruppe, ist auch für die Komplexe 2a-2h, wie in Gl. 2 formuliert, die syn-Struktur zu erwarten. Ein Hinweis darauf ist die chemische Verschiebung für das C(4)-Atom von \approx 31 ppm, die mit 32.6 ppm für das gleiche C-Atom in einem syn-Heptenyl-Komplex $[\eta^3-1-C_4H_9C_3H_4Ni-(P(OPh_3)_2]PF_6$ hinreichend übereinstimmt, während der entsprechende anti-Komplex dieses Signal bei 27.8 ppm zeigt [14].

Direkt nachgewiesen wurde das Vorliegen der syn-Form am Beispiel der Komplexe 2g, 2d und 2e ³¹P-NMR-spektroskopisch über das charakteristische AB-Spektrum des durch Ligandzusatz in CD_2Cl_2 bei -78 °C erzeugten Bis(ligand)-Komplexes $[\eta^3-C_8H_{13}Ni(PR_3)_2]X$. Durch die Bildung des Bis(ligand)-Komplexes wird die olefinische Doppelbindung vom Nickel verdrängt. Infolge der am C(3)-Atom substituierten Allylgruppe sind die beiden Phosphoratome im Komplex strukturell nicht äquivalent, und es resultiert unter der Voraussetzung, daß Austauschprozesse zwischen den Liganden durch Temperaturerniedrigung genügend verlangsamt werden können, ein AB-Spektrum, das *anti*- und *syn*-Form der substituierten Allylkomplexes eindeutig zu identifizieren gestattet [14].

Wie wir gefunden haben [14], lassen sich anti-Polybutadienylbis(triarylphosphit)nickel(II)-Komplexe durch Reaktion der Allylbis(triarylphosphat)nickel(II)-hexafluorophosphate mit Butadien erzeugen. Anti-Crotylbis(ligand)nickel(II)-Komplexe kann man aus Ni(COD)₂ in Ether bei tiefer Temperatur durch Reaktion mit Butadien und den Säuren HPF₆ aq. oder HBF₄ · OEt₂ darstellen. Man erhält zunächst durch Protonierung des Nickels und Butadieneinschub in die Ni-H-Bindung den anti-Crotyl(cycloocta-1,5-dien)nickel(II)-Komplex, aus dem durch Ligandoder auch Anionenaustausch weitere anti-Crotylkomplexe zugänglich sind [15]. Die entsprechenden syn-Crotylnickel(II)-Komplexe können in der üblichen Weise durch oxydative Addition der Alkenylhalogenide an Ni(COD)₂ oder partielle Protolyse von Bis(crotyl)nickel(II) gegebenenfalls unter Ligandzusatz gewonnen werden.

Tabelle 4 zeigt die für die *anti*- und *syn*-Form der Crotylbis(ligand)nickel(II)-Komplexe $[C_4H_7NiL_2]PF_6$ mit $L = PPh_3$, $P(O\text{-}o\text{-}Tol)_3$ und $P(OPh_3)_3$ ermittelten chemischen Verschiebungen und Kopplungskonstanten der ³¹P-NMR-AB-Spektren und die für die ausgewählten Octadienylkomplexe $[Ni(C_8H_{13})L]X$ 2g, 2d und 2e nach Überführung in die entsprechenden Bis(ligand)-Komplexe gefundenen Werte. Da die *anti-syn*-Isomerisierung in stabilen kationischen Crotylbis(ligand)nickel(II)-Komplexen eine sehr langsame Reaktion ist ($k_i \approx 10^{-5} \text{ s}^{-1}$ bei 25°C [15]), kann aus der Übereinstimmung der Differenz der chemischen Verschiebungen $\Delta\delta(AB)$ bei 2g und 2e mit dem *syn*-Crotylbis(ligand)-Komplex und dem Auftreten eines bei -90°C offensichtlich für die *syn*-Form charakteristischen Singuletts * beim

^{*} Ein AB-Spektrum wird beobachtet, wenn für die Gewindigkeitskonstante des Ligandenaustauschs $k \ll (\Delta\delta(A,B))^2$ gilt [13]. Da die Differenz der chemischen Verschiebungen $\Delta\delta(A,B)$ beim *anti*-Komplex ca. 3-4 mal größer ist als beim *syn*-Komplex, erfordert das *syn*-AB-Spektrum eine entsprechend tiefere Meßtemperatur.

includion of w. Including	anti					SVR				
	T _M	8(A)	8(B)	Δδ(A,B)	JAB	TM	(¥)	(B)	∆ δ(A,B)	JAB
	(°C)	(mdd)	(mdd)	(Hz)	(Hz)	()	(mqq)	(mqq)	(Hz)	(Hz)
[C4H7Ni(PPh3)2]FF6						- 50	30.0	27.0	110	15
[C4H,Ni(P(O-o-Tol) ₃) ₂]PF ₆	- 50	128.6	119.7	324	52	8	124.8	(Singulett) ^a		
[C4H7Ni(P(OPh)3)2]PF6	- 45	129.8	124.0	212	48	- 45	126.3	124.1	78	4 8
(C ₈ H ₁₃ Ni(PPh ₃))BF ₄ + PPh ₃	I	I	I	I	I	- 50	29.7	27.4	83	14
[C ₈ H ₁₃ Ni(P(O-o-Tol) ₃]PF ₆ + P(O-o-Tol) ₃	ł	I	I	I	I	-90	125.0	(Singulett)		
[C ₈ H ₁₃ Ni(P(O-o-'BuPh) ₃)]PF ₆ + 2 P(OPh) ₃ ^b	ł	I	I	I	I	- 50	125.9	123.9	72	52
[C ₈ H ₁₃ Ni(P(O-o-'BuPh) ₃)]PF ₆ + 2 P(OPh) ₃ ^b	1	1	I	I	I	- 50	125.9	123.9		72

³¹P-NMR-Spektren von *anti-* und *syn*-Crotylbis(ligand)nickel(II)-hexafluorophosphaten und der durch Ligandzusatz aus den Octadienyl(ligand)nickel(II)-Komplexen **2g**, **2d** und **2e** erzeugten Bis(ligand)-Komplexe { $C_8H_{13}NiL_2$ }X (X = BF₄, L = PPh₃; X = PF₆, L = P(O-o-Tol)₃, P(OPh)₃)

Tolylphosphit-Komplex 2d zweifelsfrei auf das Vorliegen der syn-Struktur in den Octadienylkomplexen geschlossen werden.

Katalytische Eigenschaften für die stereospezifische Butadienpolymerisation

Die katalytischen Eigenschaften der Komplexe 2a-2h gegenüber Butadien wurden in Toluen bzw. Chlorbenzen unter Standardbedingungen bei 50 bzw. 25 und 0°C ermittelt. Für die in Toluen unlöslichen und nur wenig reaktiven PCy₃-Komplexe 2aund 2f wurde Chlorbenzen als Lösungsmittel eingesetzt. Im Fall der ebenfalls in Toluen praktisch nicht löslichen PPh₃-Komplexe 2b und 2g reicht die Reaktivität gegenüber Butadien aus, um unter den angewandten Reaktionsbedingungen innerhalb von 5 Minuten die Auflösung des suspendierten Komplexes zu erreichen.

In den klaren gelben bis orangegelben Ausgangslösungen erfolgt die Reaktion mit dem Butadien unter mehr oder weniger rasch eintretender Viskositätszunahme ohne erkennbare Anzeichen einer Zersetzung. Die Polymerisation wurde durch Eingießen der Reaktionslösung in Methanol, dem als Stabilisator etwas Jonol zugesetzt war, abgebrochen und das sich abscheidende Polybutadien isoliert, durch Umfällung aus Benzen/Methanol gereinigt und im Vakuumtrockenschrank bei 50°C getrocknet.

In Tabelle 5 sind die unter den angegebenen Reaktionsbedingungen erhaltenen Polybutadienausbeuten, die Umsatzzahl in Mol Butadien pro Mol Ni und Stunde als Maß der Aktivität und die Mikrostruktur des Polymeren zusammengefaßt.

Wie daraus ersichtlich ist, zeigen die Octadienylnickel(II)-Komplexe 2a-2h generell eine deutlich höhere katalytische Aktivität und *cis*-Selektivität als die entsprechenden zum Vergleich jeweils mit angeführten Allylbis(ligand)nickel(II)-

Tabelle 5

Katalytische Aktivität und Selektivität der Octadienyl(ligand)nickel(II)-Komplexe $[C_8H_{13}Ni(L)]X$ 2a-2h und zum Vergleich der Bis(ligand)-Komplexe $[C_3H_5NiL_2]X$ [2-4] in Toluen bzw. Chlorbenzen unter Standardbedingungen ($[Ni] = 2 \cdot 10^{-3} M$, $[C_4H_6]_0 2 M$, Ni: $C_4H_6 = 1:1000$ in 100 ml Lösungsmittel), Mikrostruktur der Polymeren (%) 1,4-cis-, 1,4-trans- und 1,2-Polybutadien^{*a*}

Komplex	<i>T</i> (°C)	t (h)	A (%)	U	1,4-cis	1,4-trans	1,2
$\overline{[C_8H_{13}Ni(PCy_3)]PF_6}$ (2a) ^b	25	6	11	20	55	36	9
	50	3	28	90	52	39	9
[C ₈ H ₁₃ Ni(PPh ₃)]PF ₆ (2b)	25	1	24	240	60	35	5
	50	1	65	650	59	36	5
$[C_3H_5Ni(PPh_3)_2]PF_6$	50	12	13	10	3	9 0	7
$[C_8H_{13}Ni(P(OThym)_3)]PF_6$ (2c)	0	1	78	780	92	5	3
	25	0.16	85	5100	90	7	3
$[C_3H_5Ni(P(OThym)_3)_2]PF_6$	25	3	56	200	66	26	8
$[C_8H_{13}Ni(P(O-o-Tol)_3]PF_6$ (2d)	0	1	9 6	1000	92	5	3
	25	0.16	90	5400	90	8	2
$[C_3H_5Ni(P(O-o-Tol)_3)_2]PF_6$	25	6	34	50	11	87	2
$[C_8H_{13}Ni(P(O-o-^tBuPh)_3)]PF_6$ (2e) ^c	25	0.33	41	6100	92	6	2
$[C_8H_{13}Ni(PCy_3)]BF_4$ (2f) ^b	50	24	19	8	25	57	18
$[C_8H_{13}Ni(PPh_3)]BF_4$ (2g)	25	3	30	110	34	62	4
	50	1	64	640	35	61	4
$[C_8H_{13}Ni(P(OThym)_3]BF_4$ (2h)	25	1	33	330	42	52	6
$[C_3H_5Ni(P(OThym)_3)_2]BF_4$	25	3	30	100	52	38	10

^a T = Reaktionstemperatur, t = Reaktionszeit, A = Ausbeute an Polybutadien, U = Umsatzzahl. ^b in Chlorbenzen. ^c [Ni] = $0.4 \cdot 10^{-3}$, Ni/C₄H₆ = 1:5000.

Komplexe. Die mit dem Übergang zum Monoligand-Komplex verbundene Aktivitätssteigerung hängt vom Liganden L und dem Anion X ab und erreicht im Fall des P(O-o-Tol)₃-Komplexes 2d zwei Größenordnungen.

Die katalytische Aktivität und cis-Selektivität der Octadienyl-Komplexe steigt mit der in der Reihenfolge PCy₃ > PPh₃ > P(OAr)₃ abnehmenden Donorstärke des Phosphor(III)-Liganden, und wird außer beim Triphenylphosphin-Komplex – vgl. **2b** und **2g** – durch die Einführung des BF₄ -Anions stark vermindert. Die Raumerfüllung des Liganden, gemessen durch den Tolmanschen Begrenzungskegelwinkel [12], ist im Unterschied zu den Bis(ligand)-Komplexen [2] für die katalytische Wirkung offensichtlich ohne wesentliche Bedeutung. So bilden die Triarylphosphit-Hexafluorophosphat-Komplexe **2c**, **2d** und **2e** praktisch unabhängig von der Größe des Liganden etwa gleich hochaktive Katalysatoren mit einer *cis*-Selektivität von 90%.

Im Fall des P(O-o-'BuPh)₃-Komplexes 2e wurde der Reaktionsablauf NMRspektroskopisch untersucht. Dazu wurde eine 0.09 molare Lösung des Komplexes in CDCl₃ bei – 20 °C mit 11 Äquivalenten Butadien versetzt, nach einer Reaktionszeit von 24 h auf Zimmertemperatur erwärmt und dann das ¹³C-NMR-Spektrum aufgenommen. Neben den noch vorhandenen Signalen des Ausgangskomplexes wurden die charakteristischen Signale für die Methylen- und Methin-Gruppe der gebildeten Polybutadienylkette bei 27.3 und 129.5 ppm für die cis- und bei 32.6 und 130.0 für die trans-C₄-Einheiten [19] gefunden. Aus dem Intensitätsverhältnis für die entsprechenden Methylenkohlenstoffatome von 2.4:1 folgt ein Gehalt von 70% cisund 30% trans-Doppelbindungen. Unter den gleichen Reaktionsbedingungen wurde nach erneuter Butadienzugabe bei 0°C und Überführung in den Bis(triphenylphosphit)-Komplex durch Zusatz von 2 Äquivalenten $P(OPh)_3$ bei $-60^{\circ}C$ nur das ³¹P-NMR-AB-Spektrum des syn-Komplexes gefunden. Danach ist davon auszugehen, daß bei den Monoligand-Komplexen unter Polymerisationsbedingungen die anti-syn-Isomerisierung sehr rasch erfolgt und das anti-syn-Isomerisierungsgleichgewicht als eingestellt zu betrachten ist.

Diskussion

Mit der Darstellung der η^3 , η^2 -Octa-2(*E*), 7-dien-1-yl(ligand)nickel(II)-Komplexe 2a-2h konnte ein neuer, wirkungsvoller Katalysatortyp für die stereospezifische Butadienpolymerisation gewonnen werden. Zugleich wird damit die Möglichkeit der Koordination einer CC-Doppelbindung in Nachbarschaft zur Allylgruppe und die Existenz entsprechender kationischer Monoligand-Komplexe auch beim Nickel nachgewiesen.

Geht man von der für Allylnickel(II)-Komplexe durch Röntgenkristallstrukturanalysen [16] und NMR-spektroskopische Untersuchungen [16,17] gesicherten planaren Koordination am Nickel(II) mit senkrecht zur Komplexebene orientierter Allylgruppe aus und nimmt auch eine senkrechte Koordination der Doppelbindung an, dann ergeben sich für die Octadienyl(ligand)nickel(II)-Komplexe zwei mögliche Strukturen, die in den Formelbildern 3 und 4 schematisch wiedergegeben sind und sich in der relativen Anordnung von Allylgruppe und Doppelbindung unterscheiden.

Die ¹³C-NMR-spektroskopischen Untersuchungen gestatten keine Entscheidung darüber, welche dieser Strukturen vorliegt. Betrachtungen am Kalottenmodell lassen auf eine größere Flexibilität der C₈-Kette für die terminale η^3 , η^2 -Koordination am Zentralatom gemäß Struktur 4 schließen, die wir deshalb als die stabilere annehmen.

Die im Vergleich zu den entsprechenden Allylbis(ligand)nickel(II)-Komplexen generell bedeutend höhere katalytische Aktivität und *cis*-Selektivität der Octadienyl-(ligand)nickel(II)-Komplexe 2a-2h folgt nach dem von uns für die allylnickelkomplexkatalysierte Butadienpolymerisation abgeleiteten Reaktionsmodell [5] aus der um die Hälfte erniedrigten Ligandkonzentration und der gegenüber den Phosphor(III)-Liganden leichteren Substituierbarkeit der koordinierten Doppelbindung durch Butadien. Die daraus resultierende größere Gleichgewichtskonzentration der katalytisch aktiven Butadienkomplexe [RC₃H₄Ni(C₄H₆)L]⁺ und [RC₃H₄-Ni(C₄H₆)]⁺ bzw. [RC₃H₄Ni(C₄H₆)X] bewirkt die höhere Aktivität und *cis*-Selektivität.

Schema 1 vermittelt eine Ubersicht über die nach dem derzeitigen Erkenntnisstand für die Katalyse der Butadienpolymerisation durch die Octadienylkomplexe 2a-2h in Betracht kommenden Reaktionswege.

Da in den von uns aus dem bekannten η^3 , η^2 , η^3 -Dodeca-2(Z), 6(E), 10(Z)-trien-1,12-diylnickel(II) durch partielle Protolyse synthetisierten und NMR-spektroskopisch charakterisierten kationischen η^3 , η^2 , η^2 -Dodeca-2(E), 6(E), 10(Z)-trien-1ylnickel(II)-Komplexen [C₁₂H₁₉Ni]X [11] die Doppelbindung in 6-Stellung am Nickel koordiniert ist, gehen wir davon aus, daß auch die Ausgangskomplexe **2a**-**2h** mit Butadien zunächst zu Octa-2, 6-dien-1-yl(ligand)nickel(II)-Komplexen des Typs 1 bzw. **2** reagieren, in denen ebenfalls die Doppelbindung in 6-Stellung am Nickel gebunden ist. Diese Komplexe sind unter Polymerisationsbedingungen als Vorratskomplexe aufzufassen, aus denen gleichgewichtsmäßig in Abhängigkeit von der Art des Liganden L sowie des Anions X und den Reaktionsbedingungen die verschiedenen katalytisch aktiven Butadienkomplexe **3-8** gebildet werden.

Jeder Komplex kann in der *anti*- und in der *syn*-Form vorliegen. Die entsprechenden Substitutionsreaktionen laufen nach allem sehr rasch ab, so daß die Substitutionsgleichgewichte K_n und K'_n (n = 1-4) als eingestellt zu betrachten sind. Über die verschiedenen Katalysatorkomplexe entstehen dann durch Butadieneinschub in die Allylnickelbindung die C₄-Einheiten mit einer *cis*- oder *trans*-Konfiguration der Doppelbindung entsprechend der sogenannten *anti-cis*- und *syn-trans*-Korrelation [5,18].

Nach unseren Untersuchungen an Allylbis(triarylphosphit)nickel(II)-Komplexen [14] wird beim Butadieneinschub die neue η^3 -koordinierte Butenylgruppe – vgl. die Komplexstrukturen 9–11 – in der *anti*-Struktur gebildet, die sich dann mit einer

von der Komplexstruktur stark abhängigen Geschwindigkeit durch anti-syn-Isomierisierung in die thermodynamisch stabilere syn-Struktur umlagert [15].

Wie wir am Beispiel der kationischen η^3 , η^2 , η^2 -Dodeca-2(E), 6(E), 10(Z)-trien-1ylnickel(II)-Komplexe gezeigt haben, erfolgt die *anti-syn*-Isomerisierung vermutlich bedingt durch die Chelatkoordination der Doppelbindung in 6-Stellung selbst bei -70°C außerordentlich schnell [15]. Für die strukturell vergleichbaren Octadienyl-Komplexe 1 bzw. 2 sollte dieses ebenfalls zutreffen. In Übereinstimmung damit steht das nachgewiesene Vorliegen der *syn*-Form unmittelbar nach der Reaktion des P(O-o-^tBuPh)₃-Komplexes 2e mit Butadien bei 0°C. Deshalb gehen wir davon aus, daß in den Reaktionslösungen mit Butadien außer den Substitutionsgleichgewichten K_n und K'_n auch das *anti-syn*-Isomerisierungsgleichgewicht K_i eingestellt ist und die Einschubreaktion den geschwindingkeitsbestimmenden Schritt im katalytischen Zyklus bildet.

Unter dieser Voraussetzung bestimmt nach dem sogenannten Curtin-Hammett-Prinzip [20] der Unterschied in der freien Enthalpie der Übergangszustände für die Einschubreaktion von *anti*- und *syn*-Form die *cis*- bzw. *trans*-Selektivität der verschiedenen Katalysatorkomplexe 3-8 [5].

Um die katalytische Struktur-Wirkungsbeziehung zu erklären, muß man annehmen, daß die Katalysatorkomplexe mit η^2 -koordiniertem Butadien, d.h. der Monoligand- und der Anion-Komplex, deutlich weniger reaktiv als der ligandfreie kationische Komplex mit η^4 -koordiniertem Butadien sind und daß über die erstgenannten Komplexe infolge einer größeren Reaktivität der syn-Form 4 bzw. 8 im wesentlichen die *trans*-Einheiten und über den ligandfreien Komplex bedingt durch eine größere Reaktivität der *anti*-Form 5 im wesentlichen die *cis*-Einheiten erzeugt werden.

Als Ursache für die unterschiedliche Reaktivität von anti- und syn-Form in Abhängigkeit von der Art der Butadienkoordination in der Komplexebene sehen wir eine unterschiedliche sterische Behinderung der C-C-Verknüpfung, die sich im Sinn einer doppelten Stereodifferenzierung ergibt, wenn man einen π -Allyleinschubmechanismus zu grunde legt. So wird, wie Kalottenmodelle erkennen lassen, die C-C-Bindungsbildung zwischen Allylgruppe und Butadien aus der π -Koordination in den anti-Komplexen 3 und 7 mit einem Ligand oder Anion in der Komplexebene durch die wachsende Kette und in der syn-Form des ligandfreien Komplexebene durch das in trans-Stellung zur wachsenden Kette, senkrecht zur Komplexebene koordinierte Anion stärker behindert [5].

Unter diesen Voraussetzungen kann man den mit dem Übergang von den Bis(ligand)- zu den Monoligand-Komplexen 2a-2h und mit abnehmender Donorstärke der Liganden PCy₃ > PPh₃ > P(OAr)₃ sowie des Anions BF₄ -> PF₆ verbundenen Anstieg in der katalytischen Aktivität und *cis*-Selektivität auf eine entsprechende Gleichgewichtsverschiebung zum hochreaktiven ligandfreien Katalysatorkomplex zurückführen, der infolge geringerer sterischer Behinderung bevorzugt über die *anti*-Form 5 unter Bildung von *cis*-Einheiten abreagiert.

Unterschiede im Aktivitäts- und Selektivitätsanstieg können sich aus der unterschiedlichen Stabilität der Bis(ligand)-Komplexe einerseits sowie der unterschiedlichen Reaktivität der η^2 -Butadienkomplexe in Abhängigkeit vom Liganden L bzw. dem Anion X ergeben.

Bei den Hexafluorophosphaten 2a-2e ist die Koordination des Anions in der Komplexebene und damit das Gleichgewicht K_3 und auch K_4 vermutlich zu vernachlässigen. Dagegen muß bei dem stärker koordinierden Tetrafluoroboratanion [4] mit der Bildung des Katalysatorkomplexes 8 in merklicher Konzentration gerechnet werden.

Dafür spricht die Darstellbarkeit von Hepta- bzw. Octadienylnickel(II)-tetrafluoroboraten, die dem Komplextyp 12 bzw. 13 entsprechen, durch Reaktion von Butadien mit in situ erzeugten Allyl- oder Crotylnickel(II)-tetrafluoroborat [21,22].

Aus der durch die Anionenkoordination in der Komplexebene gemäß den Gleichgewichten K_3 und K_3' erniedrigten Konzentration der ligandfreien kationischen Katalysatorkomplexe 5 bzw. 6 ergibt sich dann die gefundene wesentlich geringere katalytische Aktivität und *cis*-Selektivität der Tetrafluoroborate 2f-2h im Vergleich zu den entsprechenden Hexafluorophosphaten 2a-2c.

Experimentelles

Die Synthese der Octadiendiyl-Komplexe 1 und der Octadienylkomplexe 2a–2h erfolgte unter reinstem Argon mit der von Herzog et al. [23] beschriebenen Arbeitstechnik. Zur Lösungsmittelreinigung, Durchführung der Analysen und der Polymerisationsversuche kann auf vorangegangene Arbeiten [2,3] verwiesen werden. Die NMR-Spektren wurden auf einem Gerät der Firma Bruker HX 90R im Ft-Betrieb bei 22.635 MHz unter ¹³C{¹H}- und bei 36.43 MHz unter ³¹P{¹H}-Breitbandentkopplung aufgenommen. Als Standards dienten bei ¹³C-NMR-Spektren das jeweilige Lösungsmittel (δ (CDCl₃) = 77.0 ppm; δ (CD₂Cl₂) = 53.8 ppm) und bei ³¹P-NMR-Spektren 85%ige Phosphorsäure extern (δ (85%H₃PO₄) = 0.0 ppm).

Al₂O₃ neutral (VEB Chemiewerk Greiz-Dölau), PPh₃, 54%ige HBF₄ in Ether (Merck) und 75%ige wäßrige HPF₆ (Fluka) standen als Handelsprodukte zur Verfügung. Ni(COD)₂ [24], PCy₃ [25] und die Arylphosphite P(O-o-Tol)₃ [26], P(OThym)₃ [26] und P(O-o-^tBuPh)₃ [27] wurden nach Literaturangaben dargestellt.

Versuchsvorschriften

NMR-spektroskopische Untersuchung der Reaktion des $[C_8H_{13}Ni(P(O-o-^tBuPh)_3)]PF_6$ (2e) mit Butadien

250 mg (0.3 mmol) 2e in 2.5 ml CDCl₃ werden bei -20° C mit einer Lösung von 187.5 mg (3.5 mmol) Butadien in 1 ml CDCl₃ versetzt, nach einer Reaktionszeit von 24 h wird auf Raumtemperatur erwärmt und dann das ¹³C-NMR-Spektrum gemessen. Neben den Signalen des Ausgangskomplexes werden die charakteristischen Signale der CH₂- und CH-Gruppen von den gebildeten Polybutadienketten mit einem *cis-trans*-Verhältnis der Doppelbindungen von 2.4:1 gefunden.

Nachweis der syn-Struktur

200 mg (0.25 mmol) 2e in 4 ml CDCl₃ werden bei -20 °C mit einer Lösung von 150 mg (2.8 mmol) Butadien in 1 ml CDCl₃ versetzt. Nach einer Reaktionszeit von 24 h wird für 15 Minuten auf 0 °C erwärmt, eine Lösung von 50 mg (1 mmol) Butadien in 0.3 ml CDCl₃ hinzugefügt, nach ca. 1 Minute auf -78 °C abgekühlt, 157 mg (0.5 mmol) P(OPh)₃ zugegeben und dann bei -60 °C das ³¹P-NMR-Spektrum gemessen. Neben dem Signal des freigesetzten P(O-o-^tBuPh)₃ ($\delta = 128.2$ ppm) findet man nur das typische AB-Spektrum des *syn*-Polybutadienylbis(triphenylphosphit)nickel(II)-Komplexes: $\delta(A)$ 126.2, $\delta(B)$ 124.1 ppm und $\Delta\delta(A,B)$ 77, J_{AB} 52 Hz, vgl. Tabelle 4.

η^3 , η^1 -Octa-2(E), 6(Z)-dien-1, 8-diyl(tricyclohexylphosphin)nickel(II)

15.7 g (57.1 mmol) umkristallisiertes Ni(COD)₂ werden in 80 ml Ether suspendiert und nach Abkühlen auf -78°C rasch mit einer Lösung von 16.0 g (57.1 mmol) PCy₃ in 50 ml Ether versetzt. Anschließend leitet man bei dieser Temperatur 7.0 g (130 mmol) Butadien ein und erwärmt unter Rühren langsam auf -20°C. Das gelbe Ni(COD)₂ löst sich dabei langsam auf und aus der orangefarbenen Reaktionslösung scheidet sich nach ca. 10 Minuten ein gelbes Festprodukt ab. Dieses wird nach 2 h bei -78°C über eine Kühlmantelfritte abfiltriert, zweimal mit je 75 ml gekühltem Ether gewaschen und anschließend bei -10°C im Vakuum getrocknet. Die Verbindung bildet gelbe Kristalle mit einem charakteristischen süßlichen Geruch [6]. Ausbeute: 24 g (94% d. Th.)

η^3 , η^1 -Octa-2(E), 6(Z)-dien-1, 8-diyl(triphenylphosphin)nickel(II)

13.4 g (48.3 mmol) Ni(COD)₂ werden in 100 ml Pentan mit 12.8 g (48.3 mmol) PPh₃ versetzt und dann bei -78 °C 5.4 g (100 mmol) Butadien eingeleitet. Unter Rühren erwärmt man langsam auf -20 °C. Dabei nimmt die Lösung eine orangerote Farbe an. Das Ni(COD)₂ löst sich langsam auf, und gleichzeitig scheidet sich das Reaktionsprodukt als orangefarbener feinteiliger Niederschlag ab. Anschließend wird noch 30 Minuten nachgerührt, dann der Niederschlag bei -78 °C über eine Kühlmantelfritte abfiltriert, zweimal gründlich mit Pentan bei dieser Temperatur gewaschen und bei -10 °C im Vakuum getrocknet. Der Komplex bildet eine orangefarbene feinkristalline Substanz, die aus einem Gemisch von Ether und Pentan umkristallisiert werden kann. Ausbeute: 18.6 g (89% d. Th.).

η^3 , η^2 -Octa-2(E), 7-dien-1-yl(tricyclohexylphosphin)nickel(II)hexafluorophosphat (2a)

Zu einer Suspension von 7.8 g (17.5 mmol) $[Ni(C_8H_{12})PCy_3]$ in einem Gemisch von 50 ml Ether und 10 ml THF werden bei -78 °C unter Rühren mit einer Injektionsspritze 1.83 ml (17.5 mmol) 75% ige wäßrige HPF₆ gegeben. Die Lösungsfarbe verändert sich augenblicklich von gelb nach orangerot, und der Ausgangskomplex geht vollständig in Lösung. Bei Zugabe von 100 ml Pentan zu der tiefroten Reaktionslösung scheidet sich ein dunkelrotes Öl ab. Man dekantiert, löst das Öl bei -78 °C in 10 ml Methylenchlorid, filtriert zur Entfernung des vorhandenen Wassers bei -78 °C langsam über geglühtes neutrales Al_2O_3 und fällt anschließend vorsichtig mit Ether. Es scheidet sich ein orangefarbener feinkristalliner Niederschlag ab. Nach erneutem Umkristallisieren aus CH_2Cl_2/Et_2O bei 0 °C wird der Komplex analysenrein erhalten. Ausbeute: 2.0 g (20% d. Th.)

η^3 , η^2 -Octa-2(E), 7-dien-1-yl(triphenylphosphin)nickel(II)-hexafluorophosphat (2b)

Die Lösung von 5.5 g (12.8 mmol) $[Ni(C_8H_{12})PPh_3]$ in 100 ml Ether wird bei – 78°C unter Rühren mit 1.35 ml (12.8 mmol) 75% iger wäßriger HPF₆ versetzt. Aus der orangegelben Reaktionslösung scheidet sich sofort ein amorpher gelber Niederschlag ab. Man rührt noch 15 Minuten bei – 30°C nach, filtriert bei dieser Temperatur über eine Kühlmantelfritte, wäscht das Reaktionsprodukt gründlich dreimal mit 50 ml kaltem Ether und trocknet dann im Vakuum bei 0°C. Zur Reinigung wird das Rohprodukt bei 0°C in 25 ml Methylenchlorid gelöst, die orangerote Lösung in der Kälte über eine mit Kieselgur beschichtete G4-Fritte

filtriert und dann bei -78 °C vorsichtig mit ca. 100 ml Ether überschichtet. Rasches Vermische beider Lösungen ergibt einen gelben feinteiligen Niederschlag, der bei -78 °C abfiltriert, zweimal mit je 50 ml Ether gewaschen und anschließend bei 0 °C im Vakuum getrocknet wird. Ausbeute: 3.0 g (40% d. Th.)

η^3 , η^2 -Octa-2(E), 7-dien-1-yl(trithymylphosphit)nickel(II)hexafluorophosphat (2c)

Die Suspension von 4.0 g (14.5 mmol) Ni(COD)₂ und 6.9 g (14.5 mmol) Trithymylphosphit in 50 ml Ether wird bei -20 °C mit 2.5 g (46.3 mmol) Butadien versetzt und das Reaktionsgemisch bei dieser Temperatur so lange gerührt bis sich alles Ni(COD)₂ aufgelöst hat. Zur tiefroten Reaktionslösung werden bei -20 °C 1.5 ml (14.5 mmol) 75% ige wäßrige HPF₆ gegeben. Nach kurzer Zeit fällt ein ockerfarbener Niederschlag aus, der über eine G4-Fritte abfiltriert, mit kaltem Ether gewaschen und im Vakuum getrocknet wird. Die Reinigung erfolgt durch Lösen in 10 ml Methylenchlorid bei Raumtemperatur und erneute Fällung mit Ether. Nach der Filtration wird mit Pentan gewaschen und im Vakuum getrocknet. Ausbeute: 4.4 g (38% d. Th.).

η^3 , η^2 -Octa-2(E), 7-dien-1-yl(tri-o-tolylphosphit)nickel(II)hexafluorophosphat (2d)

3.3 g (12.0 mmol) Ni(COD)₂ und 4.2 g (12.0 mmol) Tri-o-tolylphosphit werden in 50 ml Ether bei -15° C mit 4 g (74.1 mmol) Butadien versetzt und so lange gerührt bis sich alles Ni(COD)₂ gelöst hat. Dann wird die rote Lösung auf -78° C abgekühlt und 1.3 ml (12.0 mmol) 75% ige wäßrige HPF₆ zugegeben. Nach ca. 5 Minuten scheidet sich ein gelber Niederschlag ab. Zur Vervollständigung der Abscheidung werden 50 ml Pentan hinzugefügt, man filtriert bei -78° C über eine G4-Kühlmantelfritte, wäscht das Reaktionsprodukt mit kaltem Pentan und trocknet es dann bei -40° C im Vakuum. Zur Reinigung wird das Rohprodukt in ca. 10 ml Methylenchlorid gelöst, die rote Lösung zur Entfernung des Wassers bei -78° C langsam über geglühtes neutrales Al₂O₃ filtriert, dann das Reaktionsprodukt erneut mit Ether bei 0°C gefällt, abfiltriert, mit kaltem Pentan gewaschen und im Vakuum bei Raumtemperatur getrocknet. Man erhällt eine gelbe feinkristalline Substanz. Ausbeute: 1.9 g (23% d. Th.).

η^3 , η^2 -Octa-2(E), 7-dien-1-yl(tri-o-tertiärbutylphenylphosphit)nickel(II)hexafluorophosphat (2e)

5.1 g (18.54 mmol) Ni(COD)₂ werden in 50 ml Ether bei -78 °C mit der Lösung von 8.9 g (18.54 mmol) P(O-o-¹BuPh)₃ in 50 ml Ether versetzt und 3 g (56 mmol) Butadien eingeleitet. Anschließend wird auf -20 °C erwärmt und so lange gerührt bis sich alles Ni(COD)₂ gelöst hat. Die klare orangerote Lösung wird dann bei -20 °C mit 1.95 ml (18.54 mmol) 75% iger wäßriger HPF₆ versetzt. Es scheidet sich ein gelber, feinteiliger Niederschlag ab, der bei Raumtemperatur abfiltriert, mit 100 ml Pentan gewaschen und dann zweimal durch Lösen in Methylenchlorid und Fällen mit Ether umkristallisiert wird. Die Verbindung bildet orangegelbe Blättchen. Ausbeute: 4.7 g (32% d. Th.)

η^3 , η^2 -Octa-2(E), 7-dien-1-yl(tricyclohexylphosphin)nickel(II)tetrafluoroborat (2f)

2.1 g (4.7 mmol) [Ni(C_8H_{12})PCy₃] werden in 40 ml Et₂O und 10 ml THF gelöst und bei -30 °C mit 0.66 ml (4.7 mmol) 54% iger HBF₄ in Ether unter Rühren versetzt. Die tröpfchenförmig suspendierte Säure löst sich langsam auf und zugleich scheidet sich ein orangefarbener, feinteiliger Niederschlag ab. Man rührt noch 30 Minuten bei -20°C, filtriert dann über eine Kühlmantelfritte, wäscht das Reaktionsprodukt mit 50 ml kaltem Ether und kristallisiert anschließend noch zweimal aus Methylenchlorid/Ether um. Die Verbindung bildet orangefarbene Kristalle. Ausbeute: 1.2 g (47% d. Th.).

η^3, η^2 -Octa-2(E), 7-dien-1-yl(triphenylphosphin)nickel(II)tetrafluoroborat (2g)

3.4 g (12.4 mmol) Ni(COD)₂ und 3.3 g (12.5 mmol) PPh₃ werden in 40 ml THF suspendiert und bei -40 °C unter Rühren 3.0 g (55 mmol) Butadien einkondensiert. Zu der sich bildenden klaren orangefarbenen Lösung werden bei -50 °C 2.1 g (12.4 mmol) HBF₄ · OEt₂ zugegeben. Es entsteht ein braunes Öl, das nach etwa 15 Minuten kristallisiert. Das Reaktionsprodukt wird bei -40 °C abfiltriert, mit 10 ml THF in der Kälte gewaschen und im Vakuum getrocknet. Zur Umkristallisation wird in wenig CH₂Cl₂ bei 0 °C gelöst, über eine G4-Fritte filtriert und dann mit Ether gefällt. Der orangefarbene kirstalline Niederschlag wird bei 0 °C abfiltriert, zweimal mit je 20 ml Ether gewaschen und im Vakuum getrocknet. Ausbeute: 2.6 g (40% d. Th.).

Ausgehend von 2.8 g (6.5 mmol) $[Ni(C_8H_{12})PPh_3]$ in 15 ml THF können auf die gleiche Weise 2.4 g $[Ni(C_8H_{13})PPh_3]BF_4$ (72% d. Th.) erhalten werden.

η^3 , η^2 -Octa-2(E), 7-dien-1-yl(trithymylphosphit)nickel(II)tetrafluoroborat (2h)

4.0 g (14.6 mmol) Ni(COD)₂ und 7.0 g (14.6 mmol) P(OThym)₃ werden in 20 ml Ether suspendiert, bei -40 °C 3.0 g (55 mmol) Butadien einkondensiert, und die sich bildende klare gelbe Lösung mit 2.45 g (14.8 mmol) HBF₄ · OEt₂ versetzt. Es scheidet sich ein gelber feinkristalliner Niederschlag ab. Unter Rühren werden noch 20 ml Pentan zugetropft, dann der Niederschlag bei -40 °C abfiltriert, mit Pentan gewaschen und im Vakuum getrocknet. Zur Umkristallisation wird in wenig CH₂Cl₂ bei Raumtemperatur gelöst, die Lösung filtriert und durch Abkühlen auf -78 °C die Kristallisation eingeleitet. Man fügt 50 ml Pentan zu, filtriert bei -40 °C und trocknet die orangegelbe kristalline Substanz im Vakuum. Ausbeute: 8.2 g (77% d. Th.).

Literatur

- 1 R. Taube und U. Schmidt, Z. Chem., 17 (1977) 349.
- 2 R. Taube, U. Schmidt, J.-P. Gehrke und U. Anacker, J. Prakt. Chem., 326 (1984) 1.
- 3 R. Taube, J.-P. Gehrke und U. Schmidt, J. Organomet. Chem., 292 (1985) 287.
- 4 R. Taube und J.-P. Gehrke, J. Organomet. Chem., 328 (1987) 393.
- 5 R. Taube, J.-P. Gehrke und P. Böhme, Wiss. Z. Tech. Hochsch. "Carl Schorlemmer" Leuna-Merseburg, 29 (1987) 310.
- 6 R. Benn, B. Büssemeier, S. Holle, P.W. Jolly, R. Mynott, I. Tkatchenko und G. Wilke, J. Organomet. Chem., 279 (1985) 63.
- 7 A. Döhring, P.W. Jolly, R. Mynott, K.-P. Schick und G. Wilke, Z. Naturforsch. B; 36 (1981) 1189.
- 8 P.W. Jolly, Angew. Chem., 97 (1985) 279.
- 9 R. Benn, P.W. Jolly, R. Mynott, B. Raspel, G. Schenker, K.P. Schick und G. Schroth, Organometallics, 4 (1985) 1945.
- 10 P.W. Jolly, R. Mynott, B. Raspel und K.P. Schick, Organometallics, 5 (1986) 473.
- 11 J.-P. Gehrke, P. Böhme und R. Taube, Z. Chem., 27 (1987) 190, ausführliche Veröffentlichung in Vorbereitung.
- 12 C.A. Tolman, Chem. Rev., 77 (1977) 313.

- 13 E. Breitmaier und W. Voelter, Monographs in Modern Chemistry: ¹³C-NMR-Spectroscopy, Vol. 5, Verlag Chemie, Weinheim, New York, 1978, S. 138.
- 14 R. Taube, J.-P. Gehrke und R. Radeglia, J. Organomet. Chem., 291 (1985) 101.
- 15 J.-P. Gehrke, R. Taube, M. Jahn und R. Radeglia, Z. Chem., 28 (1988) 262; ausführliche Veröffentlichung in Vorbereitung.
- 16 P.W. Jolly und G. Wilke, The Organic Chemistry of Nickel, Vol. 1, Academic Press, New York und London, 1974.
- 17 R. Taube und J.-P. Gehrke, J. Organomet. Chem., 327 (1987) 419.
- 18 L. Porri, in F. Ciardelly und P. Giusti (Hrsg.), IUPAC, Structural Order in Polymers, Pergamon Press, Oxford, New York, 1981, S. 51
- 19 F. Conti, A. Segre, P. Pini und L. Porri, Polymer, 15 (1974) 5.
- 20 L.P. Hammett, Physikalische Organische Chemie, Akademie-Verlag, Berlin, 1976, S. 121
- 21 P. Böhme, Dissertation A, Merseburg, 1986.
- 22 M. Jahn, Diplomarbeit, Merseburg, 1987.
- 23 S. Herzog und J. Dehnert, Z. Chem., 4 (1964) 1; S. Herzog, J. Dehnert und K. Lühder in H.B. Jonassen und A. Weissberger (Hrsg.), Technique of Inorganic Chemistry, Vol. VII, New York, 1968, S. 119–149.
- 24 B. Bogdanovič, M. Kröner und G. Wilke, Liebigs Ann. Chem., 699 (1966) 1.
- 25 K. Issleib und A. Brack, Z. Anorg. Allg. Chem., 277 (1954) 266.
- 26 Houben-Weyl, Methoden der Organischen Chemie 4. Aufl., Bd. XII, 2, Georg-Thieme-Verlag, Stuttgart, 1964, S. 60.
- 27 B.A. Badford, DOS 2.046.200 (25. 3. 1971), C.A., 74 (1971) 125, 135 g.
- 28 R. Taube, P. Böhme und J.-P. Gehrke, Z. Anorg. Allg. Chem., 578 (1989) 89.